Papers
Topics
Authors
Recent
2000 character limit reached

Phase transitions and random quantum satisfiability (0903.1904v1)

Published 11 Mar 2009 in quant-ph, cond-mat.dis-nn, cond-mat.stat-mech, and cs.CC

Abstract: Alongside the effort underway to build quantum computers, it is important to better understand which classes of problems they will find easy and which others even they will find intractable. We study random ensembles of the QMA$_1$-complete quantum satisfiability (QSAT) problem introduced by Bravyi. QSAT appropriately generalizes the NP-complete classical satisfiability (SAT) problem. We show that, as the density of clauses/projectors is varied, the ensembles exhibit quantum phase transitions between phases that are satisfiable and unsatisfiable. Remarkably, almost all instances of QSAT for any hypergraph exhibit the same dimension of the satisfying manifold. This establishes the QSAT decision problem as equivalent to a, potentially new, graph theoretic problem and that the hardest typical instances are likely to be localized in a bounded range of clause density.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.