Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The One-Way Communication Complexity of Group Membership (0902.3175v2)

Published 18 Feb 2009 in cs.CC and quant-ph

Abstract: This paper studies the one-way communication complexity of the subgroup membership problem, a classical problem closely related to basic questions in quantum computing. Here Alice receives, as input, a subgroup $H$ of a finite group $G$; Bob receives an element $x \in G$. Alice is permitted to send a single message to Bob, after which he must decide if his input $x$ is an element of $H$. We prove the following upper bounds on the classical communication complexity of this problem in the bounded-error setting: (1) The problem can be solved with $O(\log |G|)$ communication, provided the subgroup $H$ is normal; (2) The problem can be solved with $O(d_{\max} \cdot \log |G|)$ communication, where $d_{\max}$ is the maximum of the dimensions of the irreducible complex representations of $G$; (3) For any prime $p$ not dividing $|G|$, the problem can be solved with $O(d_{\max} \cdot \log p)$ communication, where $d_{\max}$ is the maximum of the dimensions of the irreducible $\F_p$-representations of $G$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.