Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Generalization of Nemhauser and Trotter's Local Optimization Theorem (0902.2149v1)

Published 12 Feb 2009 in cs.CC, cs.DM, and cs.DS

Abstract: The Nemhauser-Trotter local optimization theorem applies to the NP-hard Vertex Cover problem and has applications in approximation as well as parameterized algorithmics. We present a framework that generalizes Nemhauser and Trotter's result to vertex deletion and graph packing problems, introducing novel algorithmic strategies based on purely combinatorial arguments (not referring to linear programming as the Nemhauser-Trotter result originally did). We exhibit our framework using a generalization of Vertex Cover, called Bounded- Degree Deletion, that has promise to become an important tool in the analysis of gene and other biological networks. For some fixed d \geq 0, Bounded-Degree Deletion asks to delete as few vertices as possible from a graph in order to transform it into a graph with maximum vertex degree at most d. Vertex Cover is the special case of d = 0. Our generalization of the Nemhauser-Trotter theorem implies that Bounded-Degree Deletion has a problem kernel with a linear number of vertices for every constant d. We also outline an application of our extremal combinatorial approach to the problem of packing stars with a bounded number of leaves. Finally, charting the border between (parameterized) tractability and intractability for Bounded-Degree Deletion, we provide a W[2]-hardness result for Bounded-Degree Deletion in case of unbounded d-values.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.