Papers
Topics
Authors
Recent
2000 character limit reached

On Local Symmetries And Universality In Cellular Autmata (0902.1253v1)

Published 7 Feb 2009 in cs.DM and math.DS

Abstract: Cellular automata (CA) are dynamical systems defined by a finite local rule but they are studied for their global dynamics. They can exhibit a wide range of complex behaviours and a celebrated result is the existence of (intrinsically) universal CA, that is CA able to fully simulate any other CA. In this paper, we show that the asymptotic density of universal cellular automata is 1 in several families of CA defined by local symmetries. We extend results previously established for captive cellular automata in two significant ways. First, our results apply to well-known families of CA (e.g. the family of outer-totalistic CA containing the Game of Life) and, second, we obtain such density results with both increasing number of states and increasing neighbourhood. Moreover, thanks to universality-preserving encodings, we show that the universality problem remains undecidable in some of those families.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.