Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient implementation of linear programming decoding (0902.0657v1)

Published 4 Feb 2009 in cs.IT and math.IT

Abstract: While linear programming (LP) decoding provides more flexibility for finite-length performance analysis than iterative message-passing (IMP) decoding, it is computationally more complex to implement in its original form, due to both the large size of the relaxed LP problem, and the inefficiency of using general-purpose LP solvers. This paper explores ideas for fast LP decoding of low-density parity-check (LDPC) codes. We first prove, by modifying the previously reported Adaptive LP decoding scheme to allow removal of unnecessary constraints, that LP decoding can be performed by solving a number of LP problems that contain at most one linear constraint derived from each of the parity-check constraints. By exploiting this property, we study a sparse interior-point implementation for solving this sequence of linear programs. Since the most complex part of each iteration of the interior-point algorithm is the solution of a (usually ill-conditioned) system of linear equations for finding the step direction, we propose a preconditioning algorithm to facilitate iterative solution of such systems. The proposed preconditioning algorithm is similar to the encoding procedure of LDPC codes, and we demonstrate its effectiveness via both analytical methods and computer simulation results.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.