Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Efficient implementation of linear programming decoding (0902.0657v1)

Published 4 Feb 2009 in cs.IT and math.IT

Abstract: While linear programming (LP) decoding provides more flexibility for finite-length performance analysis than iterative message-passing (IMP) decoding, it is computationally more complex to implement in its original form, due to both the large size of the relaxed LP problem, and the inefficiency of using general-purpose LP solvers. This paper explores ideas for fast LP decoding of low-density parity-check (LDPC) codes. We first prove, by modifying the previously reported Adaptive LP decoding scheme to allow removal of unnecessary constraints, that LP decoding can be performed by solving a number of LP problems that contain at most one linear constraint derived from each of the parity-check constraints. By exploiting this property, we study a sparse interior-point implementation for solving this sequence of linear programs. Since the most complex part of each iteration of the interior-point algorithm is the solution of a (usually ill-conditioned) system of linear equations for finding the step direction, we propose a preconditioning algorithm to facilitate iterative solution of such systems. The proposed preconditioning algorithm is similar to the encoding procedure of LDPC codes, and we demonstrate its effectiveness via both analytical methods and computer simulation results.

Citations (49)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.