Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tree Exploration for Bayesian RL Exploration (0902.0392v2)

Published 2 Feb 2009 in stat.ML and cs.LG

Abstract: Research in reinforcement learning has produced algorithms for optimal decision making under uncertainty that fall within two main types. The first employs a Bayesian framework, where optimality improves with increased computational time. This is because the resulting planning task takes the form of a dynamic programming problem on a belief tree with an infinite number of states. The second type employs relatively simple algorithm which are shown to suffer small regret within a distribution-free framework. This paper presents a lower bound and a high probability upper bound on the optimal value function for the nodes in the Bayesian belief tree, which are analogous to similar bounds in POMDPs. The bounds are then used to create more efficient strategies for exploring the tree. The resulting algorithms are compared with the distribution-free algorithm UCB1, as well as a simpler baseline algorithm on multi-armed bandit problems.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.