Immunity and Pseudorandomness of Context-Free Languages (0902.0261v2)
Abstract: We discuss the computational complexity of context-free languages, concentrating on two well-known structural properties---immunity and pseudorandomness. An infinite language is REG-immune (resp., CFL-immune) if it contains no infinite subset that is a regular (resp., context-free) language. We prove that (i) there is a context-free REG-immune language outside REG/n and (ii) there is a REG-bi-immune language that can be computed deterministically using logarithmic space. We also show that (iii) there is a CFL-simple set, where a CFL-simple language is an infinite context-free language whose complement is CFL-immune. Similar to the REG-immunity, a REG-primeimmune language has no polynomially dense subsets that are also regular. We further prove that (iv) there is a context-free language that is REG/n-bi-primeimmune. Concerning pseudorandomness of context-free languages, we show that (v) CFL contains REG/n-pseudorandom languages. Finally, we prove that (vi) against REG/n, there exists an almost 1-1 pseudorandom generator computable in nondeterministic pushdown automata equipped with a write-only output tape and (vii) against REG, there is no almost 1-1 weakly pseudorandom generator computable deterministically in linear time by a single-tape Turing machine.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.