Non-Confluent NLC Graph Grammar Inference by Compressing Disjoint Subgraphs (0901.4876v1)
Abstract: Grammar inference deals with determining (preferable simple) models/grammars consistent with a set of observations. There is a large body of research on grammar inference within the theory of formal languages. However, there is surprisingly little known on grammar inference for graph grammars. In this paper we take a further step in this direction and work within the framework of node label controlled (NLC) graph grammars. Specifically, we characterize, given a set of disjoint and isomorphic subgraphs of a graph $G$, whether or not there is a NLC graph grammar rule which can generate these subgraphs to obtain $G$. This generalizes previous results by assuming that the set of isomorphic subgraphs is disjoint instead of non-touching. This leads naturally to consider the more involved ``non-confluent'' graph grammar rules.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.