Papers
Topics
Authors
Recent
2000 character limit reached

Faster Real Feasibility via Circuit Discriminants (0901.4400v2)

Published 28 Jan 2009 in math.AG, cs.CC, and math.OC

Abstract: We show that detecting real roots for honestly n-variate (n+2)-nomials (with integer exponents and coefficients) can be done in time polynomial in the sparse encoding for any fixed n. The best previous complexity bounds were exponential in the sparse encoding, even for n fixed. We then give a characterization of those functions k(n) such that the complexity of detecting real roots for n-variate (n+k(n))-nomials transitions from P to NP-hardness as n tends to infinity. Our proofs follow in large part from a new complexity threshold for deciding the vanishing of A-discriminants of n-variate (n+k(n))-nomials. Diophantine approximation, through linear forms in logarithms, also arises as a key tool.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.