Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quasi-Cyclic LDPC Codes: Influence of Proto- and Tanner-Graph Structure on Minimum Hamming Distance Upper Bounds (0901.4129v2)

Published 26 Jan 2009 in cs.IT, cs.DM, and math.IT

Abstract: Quasi-cyclic (QC) low-density parity-check (LDPC) codes are an important instance of proto-graph-based LDPC codes. In this paper we present upper bounds on the minimum Hamming distance of QC LDPC codes and study how these upper bounds depend on graph structure parameters (like variable degrees, check node degrees, girth) of the Tanner graph and of the underlying proto-graph. Moreover, for several classes of proto-graphs we present explicit QC LDPC code constructions that achieve (or come close to) the respective minimum Hamming distance upper bounds. Because of the tight algebraic connection between QC codes and convolutional codes, we can state similar results for the free Hamming distance of convolutional codes. In fact, some QC code statements are established by first proving the corresponding convolutional code statements and then using a result by Tanner that says that the minimum Hamming distance of a QC code is upper bounded by the free Hamming distance of the convolutional code that is obtained by "unwrapping" the QC code.

Citations (130)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.