Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Joint universal lossy coding and identification of stationary mixing sources with general alphabets (0901.1904v1)

Published 13 Jan 2009 in cs.IT, cs.LG, and math.IT

Abstract: We consider the problem of joint universal variable-rate lossy coding and identification for parametric classes of stationary $\beta$-mixing sources with general (Polish) alphabets. Compression performance is measured in terms of Lagrangians, while identification performance is measured by the variational distance between the true source and the estimated source. Provided that the sources are mixing at a sufficiently fast rate and satisfy certain smoothness and Vapnik-Chervonenkis learnability conditions, it is shown that, for bounded metric distortions, there exist universal schemes for joint lossy compression and identification whose Lagrangian redundancies converge to zero as $\sqrt{V_n \log n /n}$ as the block length $n$ tends to infinity, where $V_n$ is the Vapnik-Chervonenkis dimension of a certain class of decision regions defined by the $n$-dimensional marginal distributions of the sources; furthermore, for each $n$, the decoder can identify $n$-dimensional marginal of the active source up to a ball of radius $O(\sqrt{V_n\log n/n})$ in variational distance, eventually with probability one. The results are supplemented by several examples of parametric sources satisfying the regularity conditions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube