Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Weighted Well-Covered Graphs without Cycles of Length 4, 5, 6 and 7 (0901.0858v4)

Published 7 Jan 2009 in cs.DM and cs.CC

Abstract: A graph is well-covered if every maximal independent set has the same cardinality. The recognition problem of well-covered graphs is known to be co-NP-complete. Let w be a weight function defined on the vertices of G. Then G is w-well-covered if all maximal independent sets of G are of the same weight. The set of weight functions w for which a graph is w-well-covered is a vector space. We prove that finding the vector space of weight functions under which an input graph is w-well-covered can be done in polynomial time, if the input graph does not contain cycles of length 4, 5, 6 and 7.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.