Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Using constraint programming to resolve the multi-source/multi-site data movement paradigm on the Grid (0901.0148v1)

Published 31 Dec 2008 in cs.PF

Abstract: In order to achieve both fast and coordinated data transfer to collaborative sites as well as to create a distribution of data over multiple sites, efficient data movement is one of the most essential aspects in distributed environment. With such capabilities at hand, truly distributed task scheduling with minimal latencies would be reachable by internationally distributed collaborations (such as ones in HENP) seeking for scavenging or maximizing on geographically spread computational resources. But it is often not all clear (a) how to move data when available from multiple sources or (b) how to move data to multiple compute resources to achieve an optimal usage of available resources. We present a method of creating a Constraint Programming (CP) model consisting of sites, links and their attributes such as bandwidth for grid network data transfer also considering user tasks as part of the objective function for an optimal solution. We will explore and explain trade-off between schedule generation time and divergence from the optimal solution and show how to improve and render viable the solution's finding time by using search tree time limit, approximations, restrictions such as symmetry breaking or grouping similar tasks together, or generating sequence of optimal schedules by splitting the input problem. Results of data transfer simulation for each case will also include a well known Peer-2-Peer model, and time taken to generate a schedule as well as time needed for a schedule execution will be compared to a CP optimal solution. We will additionally present a possible implementation aimed to bring a distributed datasets (multiple sources) to a given site in a minimal time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.