Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Information Inequalities for Joint Distributions, with Interpretations and Applications (0901.0044v2)

Published 31 Dec 2008 in cs.IT, math.CO, math.IT, and math.PR

Abstract: Upper and lower bounds are obtained for the joint entropy of a collection of random variables in terms of an arbitrary collection of subset joint entropies. These inequalities generalize Shannon's chain rule for entropy as well as inequalities of Han, Fujishige and Shearer. A duality between the upper and lower bounds for joint entropy is developed. All of these results are shown to be special cases of general, new results for submodular functions-- thus, the inequalities presented constitute a richly structured class of Shannon-type inequalities. The new inequalities are applied to obtain new results in combinatorics, such as bounds on the number of independent sets in an arbitrary graph and the number of zero-error source-channel codes, as well as new determinantal inequalities in matrix theory. A new inequality for relative entropies is also developed, along with interpretations in terms of hypothesis testing. Finally, revealing connections of the results to literature in economics, computer science, and physics are explored.

Citations (134)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.