Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Compressive sensing: a paradigm shift in signal processing (0812.3137v1)

Published 16 Dec 2008 in math.HO, cs.DS, cs.NA, math.NA, and math.OC

Abstract: We survey a new paradigm in signal processing known as "compressive sensing". Contrary to old practices of data acquisition and reconstruction based on the Shannon-Nyquist sampling principle, the new theory shows that it is possible to reconstruct images or signals of scientific interest accurately and even exactly from a number of samples which is far smaller than the desired resolution of the image/signal, e.g., the number of pixels in the image. This new technique draws from results in several fields of mathematics, including algebra, optimization, probability theory, and harmonic analysis. We will discuss some of the key mathematical ideas behind compressive sensing, as well as its implications to other fields: numerical analysis, information theory, theoretical computer science, and engineering.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.