Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Separation Algorithm for Improved LP-Decoding of Linear Block Codes (0812.2559v1)

Published 13 Dec 2008 in cs.IT and math.IT

Abstract: Maximum Likelihood (ML) decoding is the optimal decoding algorithm for arbitrary linear block codes and can be written as an Integer Programming (IP) problem. Feldman et al. relaxed this IP problem and presented Linear Programming (LP) based decoding algorithm for linear block codes. In this paper, we propose a new IP formulation of the ML decoding problem and solve the IP with generic methods. The formulation uses indicator variables to detect violated parity checks. We derive Gomory cuts from our formulation and use them in a separation algorithm to find ML codewords. We further propose an efficient method of finding cuts induced by redundant parity checks (RPC). Under certain circumstances we can guarantee that these RPC cuts are valid and cut off the fractional optimal solutions of LP decoding. We demonstrate on two LDPC codes and one BCH code that our separation algorithm performs significantly better than LP decoding.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.