Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial hierarchy, Betti numbers and a real analogue of Toda's theorem (0812.1200v3)

Published 5 Dec 2008 in cs.CC, math.AT, math.CO, and math.LO

Abstract: Toda proved in 1989 that the (discrete) polynomial time hierarchy, $\mathbf{PH}$, is contained in the class $\mathbf{P}{#\mathbf{P}}$, namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class $#\mathbf{P}$. This result which illustrates the power of counting is considered to be a seminal result in computational complexity theory. An analogous result in the complexity theory over the reals (in the sense of Blum-Shub-Smale real machines) has been missing so far. In this paper we formulate and prove a real analogue of Toda's theorem. Unlike Toda's proof in the discrete case, which relied on sophisticated combinatorial arguments, our proof is topological in nature. As a consequence of our techniques we are also able to relate the computational hardness of two extremely well-studied problems in algorithmic semi-algebraic geometry -- namely the problem of deciding sentences in the first order theory of the reals with a constant number of quantifier alternations, and that of computing Betti numbers of semi-algebraic sets. We obtain a polynomial time reduction of the compact version of the first problem to the second. This latter result might be of independent interest to researchers in algorithmic semi-algebraic geometry.

Citations (23)

Summary

We haven't generated a summary for this paper yet.