Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Packing and Covering Properties of Subspace Codes for Error Control in Random Linear Network Coding (0811.4163v4)

Published 25 Nov 2008 in cs.IT and math.IT

Abstract: Codes in the projective space and codes in the Grassmannian over a finite field - referred to as subspace codes and constant-dimension codes (CDCs), respectively - have been proposed for error control in random linear network coding. For subspace codes and CDCs, a subspace metric was introduced to correct both errors and erasures, and an injection metric was proposed to correct adversarial errors. In this paper, we investigate the packing and covering properties of subspace codes with both metrics. We first determine some fundamental geometric properties of the projective space with both metrics. Using these properties, we then derive bounds on the cardinalities of packing and covering subspace codes, and determine the asymptotic rates of optimal packing and optimal covering subspace codes with both metrics. Our results not only provide guiding principles for the code design for error control in random linear network coding, but also illustrate the difference between the two metrics from a geometric perspective. In particular, our results show that optimal packing CDCs are optimal packing subspace codes up to a scalar for both metrics if and only if their dimension is half of their length (up to rounding). In this case, CDCs suffer from only limited rate loss as opposed to subspace codes with the same minimum distance. We also show that optimal covering CDCs can be used to construct asymptotically optimal covering subspace codes with the injection metric only.

Citations (50)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.