Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Capacity of Ad hoc Networks under Random Packet Losses (0811.3585v1)

Published 21 Nov 2008 in cs.IT, cs.NI, and math.IT

Abstract: We consider the problem of determining asymptotic bounds on the capacity of a random ad hoc network. Previous approaches assumed a link layer model in which if a transmitter-receiver pair can communicate with each other, i.e., the Signal to Interference and Noise Ratio (SINR) is above a certain threshold, then every transmitted packet is received error-free by the receiver thereby. Using this model, the per node capacity of the network was shown to be $\Theta(\frac{1}{\sqrt{n\log{n}}})$. In reality, for any finite link SINR, there is a non-zero probability of erroneous reception of the packet. We show that in a large network, as the packet travels an asymptotically large number of hops from source to destination, the cumulative impact of packet losses over intermediate links results in a per-node throughput of only $O(\frac{1}{n})$. We then propose a new scheduling scheme to counter this effect. The proposed scheme provides tight guarantees on end-to-end packet loss probability, and improves the per-node throughput to $\Omega(\frac{1}{\sqrt{n} ({\log{n}}){\frac{\alpha{{+2}}}{2(\alpha-2)}}})$ where $\alpha>2$ is the path loss exponent.

Citations (24)

Summary

We haven't generated a summary for this paper yet.