Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evolutionary Construction of Geographical Networks with Nearly Optimal Robustness and Efficient Routing Properties (0811.2827v3)

Published 18 Nov 2008 in physics.data-an, cs.CG, cs.NI, and physics.soc-ph

Abstract: Robust and efficient design of networks on a realistic geographical space is one of the important issues for the realization of dependable communication systems. In this paper, based on a percolation theory and a geometric graph property, we investigate such a design from the following viewpoints: 1) network evolution according to a spatially heterogeneous population, 2) trimodal low degrees for the tolerant connectivity against both failures and attacks, and 3) decentralized routing within short paths. Furthermore, we point out the weakened tolerance by geographical constraints on local cycles, and propose a practical strategy by adding a small fraction of shortcut links between randomly chosen nodes in order to improve the robustness to a similar level to that of the optimal bimodal networks with a larger degree $O(\sqrt{N})$ for the network size $N$. These properties will be useful for constructing future ad-hoc networks in wide-area communications.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.