Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing voting power in easy weighted voting games (0811.2497v2)

Published 15 Nov 2008 in cs.GT, cs.CC, and cs.DS

Abstract: Weighted voting games are ubiquitous mathematical models which are used in economics, political science, neuroscience, threshold logic, reliability theory and distributed systems. They model situations where agents with variable voting weight vote in favour of or against a decision. A coalition of agents is winning if and only if the sum of weights of the coalition exceeds or equals a specified quota. The Banzhaf index is a measure of voting power of an agent in a weighted voting game. It depends on the number of coalitions in which the agent is the difference in the coalition winning or losing. It is well known that computing Banzhaf indices in a weighted voting game is NP-hard. We give a comprehensive classification of weighted voting games which can be solved in polynomial time. Among other results, we provide a polynomial ($O(k{(\frac{n}{k})}k)$) algorithm to compute the Banzhaf indices in weighted voting games in which the number of weight values is bounded by $k$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.