FPT Algorithms and Kernels for the Directed $k$-Leaf Problem (0810.4946v3)
Abstract: A subgraph $T$ of a digraph $D$ is an {\em out-branching} if $T$ is an oriented spanning tree with only one vertex of in-degree zero (called the {\em root}). The vertices of $T$ of out-degree zero are {\em leaves}. In the {\sc Directed $k$-Leaf} Problem, we are given a digraph $D$ and an integral parameter $k$, and we are to decide whether $D$ has an out-branching with at least $k$ leaves. Recently, Kneis et al. (2008) obtained an algorithm for the problem of running time $4{k}\cdot n{O(1)}$. We describe a new algorithm for the problem of running time $3.72{k}\cdot n{O(1)}$. In {\sc Rooted Directed $k$-Leaf} Problem, apart from $D$ and $k$, we are given a vertex $r$ of $D$ and we are to decide whether $D$ has an out-branching rooted at $r$ with at least $k$ leaves. Very recently, Fernau et al. (2008) found an $O(k3)$-size kernel for {\sc Rooted Directed $k$-Leaf}. In this paper, we obtain an $O(k)$ kernel for {\sc Rooted Directed $k$-Leaf} restricted to acyclic digraphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.