Papers
Topics
Authors
Recent
2000 character limit reached

Semidefinite Programming for Min-Max Problems and Games (0810.3150v2)

Published 17 Oct 2008 in math.OC and cs.GT

Abstract: We introduce two min-max problems: the first problem is to minimize the supremum of finitely many rational functions over a compact basic semi-algebraic set whereas the second problem is a 2-player zero-sum polynomial game in randomized strategies and with compact basic semi-algebraic pure strategy sets. It is proved that their optimal solution can be approximated by solving a hierarchy of semidefinite relaxations, in the spirit of the moment approach developed in Lasserre. This provides a unified approach and a class of algorithms to approximate all Nash equilibria and min-max strategies of many static and dynamic games. Each semidefinite relaxation can be solved in time which is polynomial in its input size and practice from global optimization suggests that very often few relaxations are needed for a good approximation (and sometimes even finite convergence).

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.