Bounded Underapproximations (0809.1236v4)
Abstract: We show a new and constructive proof of the following language-theoretic result: for every context-free language L, there is a bounded context-free language L' included in L which has the same Parikh (commutative) image as L. Bounded languages, introduced by Ginsburg and Spanier, are subsets of regular languages of the form w1*w2*...wk* for some finite words w1,...,wk. In particular bounded subsets of context-free languages have nice structural and decidability properties. Our proof proceeds in two parts. First, using Newton's iterations on the language semiring, we construct a context-free subset Ls of L that can be represented as a sequence of substitutions on a linear language and has the same Parikh image as L. Second, we inductively construct a Parikh-equivalent bounded context-free subset of Ls. We show two applications of this result in model checking: to underapproximate the reachable state space of multithreaded procedural programs and to underapproximate the reachable state space of recursive counter programs. The bounded language constructed above provides a decidable underapproximation for the original problems. By iterating the construction, we get a semi-algorithm for the original problems that constructs a sequence of underapproximations such that no two underapproximations of the sequence can be compared. This provides a progress guarantee: every word w in L is in some underapproximation of the sequence. In addition, we show that our approach subsumes context-bounded reachability for multithreaded programs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.