Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Capacity Regions and Bounds for a Class of Z-interference Channels (0808.0876v1)

Published 6 Aug 2008 in cs.IT and math.IT

Abstract: We define a class of Z-interference channels for which we obtain a new upper bound on the capacity region. The bound exploits a technique first introduced by Korner and Marton. A channel in this class has the property that, for the transmitter-receiver pair that suffers from interference, the conditional output entropy at the receiver is invariant with respect to the transmitted codewords. We compare the new capacity region upper bound with the Han/Kobayashi achievable rate region for interference channels. This comparison shows that our bound is tight in some cases, thereby yielding specific points on the capacity region as well as sum capacity for certain Z-interference channels. In particular, this result can be used as an alternate method to obtain sum capacity of Gaussian Z-interference channels. We then apply an additional restriction on our channel class: the transmitter-receiver pair that suffers from interference achieves its maximum output entropy with a single input distribution irrespective of the interference distribution. For these channels we show that our new capacity region upper bound coincides with the Han/Kobayashi achievable rate region, which is therefore capacity-achieving. In particular, for these channels superposition encoding with partial decoding is shown to be optimal and a single-letter characterization for the capacity region is obtained.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.