Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the random satisfiable process (0807.4326v1)

Published 27 Jul 2008 in math.CO, cs.CC, and math.PR

Abstract: In this work we suggest a new model for generating random satisfiable k-CNF formulas. To generate such formulas -- randomly permute all 2k\binom{n}{k} possible clauses over the variables x_1, ..., x_n, and starting from the empty formula, go over the clauses one by one, including each new clause as you go along if after its addition the formula remains satisfiable. We study the evolution of this process, namely the distribution over formulas obtained after scanning through the first m clauses (in the random permutation's order). Random processes with conditioning on a certain property being respected are widely studied in the context of graph properties. This study was pioneered by Ruci\'nski and Wormald in 1992 for graphs with a fixed degree sequence, and also by Erd\H{o}s, Suen, and Winkler in 1995 for triangle-free and bipartite graphs. Since then many other graph properties were studied such as planarity and H-freeness. Thus our model is a natural extension of this approach to the satisfiability setting. Our main contribution is as follows. For m \geq cn, c=c(k) a sufficiently large constant, we are able to characterize the structure of the solution space of a typical formula in this distribution. Specifically, we show that typically all satisfying assignments are essentially clustered in one cluster, and all but e{-\Omega(m/n)} n of the variables take the same value in all satisfying assignments. We also describe a polynomial time algorithm that finds with high probability a satisfying assignment for such formulas.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.