Emergent Mind

Linear Coloring and Linear Graphs

(0807.4234)
Published Jul 26, 2008 in cs.DM and cs.DS

Abstract

Motivated by the definition of linear coloring on simplicial complexes, recently introduced in the context of algebraic topology \cite{Civan}, and the framework through which it was studied, we introduce the linear coloring on graphs. We provide an upper bound for the chromatic number $\chi(G)$, for any graph $G$, and show that $G$ can be linearly colored in polynomial time by proposing a simple linear coloring algorithm. Based on these results, we define a new class of perfect graphs, which we call co-linear graphs, and study their complement graphs, namely linear graphs. The linear coloring of a graph $G$ is a vertex coloring such that two vertices can be assigned the same color, if their corresponding clique sets are associated by the set inclusion relation (a clique set of a vertex $u$ is the set of all maximal cliques containing $u$); the linear chromatic number $\mathcal{\lambda}(G)$ of $G$ is the least integer $k$ for which $G$ admits a linear coloring with $k$ colors. We show that linear graphs are those graphs $G$ for which the linear chromatic number achieves its theoretical lower bound in every induced subgraph of $G$. We prove inclusion relations between these two classes of graphs and other subclasses of chordal and co-chordal graphs, and also study the structure of the forbidden induced subgraphs of the class of linear graphs.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.