Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal Direct Sum and Privacy Trade-off Results for Quantum and Classical Communication Complexity (0807.1267v1)

Published 8 Jul 2008 in cs.DC, cs.IT, and math.IT

Abstract: We show optimal Direct Sum result for the one-way entanglement-assisted quantum communication complexity for any relation f subset of X x Y x Z. We show: Q{1,pub}(fm) = Omega(m Q{1,pub}(f)), where Q{1,pub}(f), represents the one-way entanglement-assisted quantum communication complexity of f with error at most 1/3 and fm represents m-copies of f. Similarly for the one-way public-coin classical communication complexity we show: R{1,pub}(fm) = Omega(m R{1,pub}(f)), where R{1,pub}(f), represents the one-way public-coin classical communication complexity of f with error at most 1/3. We show similar optimal Direct Sum results for the Simultaneous Message Passing quantum and classical models. For two-way protocols we present optimal Privacy Trade-off results leading to a Weak Direct Sum result for such protocols. We show our Direct Sum and Privacy Trade-off results via message compression arguments which also imply a new round elimination lemma in quantum communication. This allows us to extend classical lower bounds on the cell probe complexity of some data structure problems, e.g. Approximate Nearest Neighbor Searching on the Hamming cube {0,1}n and Predecessor Search to the quantum setting. In a separate result we show that Newman's technique of reducing the number of public-coins in a classical protocol cannot be lifted to the quantum setting. We do this by defining a general notion of black-box reduction of prior entanglement that subsumes Newman's technique. We prove that such a black-box reduction is impossible for quantum protocols. In the final result in the theme of message compression, we provide an upper bound on the problem of Exact Remote State Preparation.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.