Shortest Paths Avoiding Forbidden Subpaths (0807.0807v2)
Abstract: In this paper we study a variant of the shortest path problem in graphs: given a weighted graph G and vertices s and t, and given a set X of forbidden paths in G, find a shortest s-t path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We call each path in X an exception, and our desired path a shortest exception-avoiding path. We formulate a new version of the problem where the algorithm has no a priori knowledge of X, and finds out about an exception x in X only when a path containing x fails. This situation arises in computing shortest paths in optical networks. We give an algorithm that finds a shortest exception avoiding path in time polynomial in |G| and |X|. The main idea is to run Dijkstra's algorithm incrementally after replicating vertices when an exception is discovered.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.