Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Computationally Efficient Estimators for Dimension Reductions Using Stable Random Projections (0806.4422v1)

Published 27 Jun 2008 in cs.LG

Abstract: The method of stable random projections is a tool for efficiently computing the $l_\alpha$ distances using low memory, where $0<\alpha \leq 2$ is a tuning parameter. The method boils down to a statistical estimation task and various estimators have been proposed, based on the geometric mean, the harmonic mean, and the fractional power etc. This study proposes the optimal quantile estimator, whose main operation is selecting, which is considerably less expensive than taking fractional power, the main operation in previous estimators. Our experiments report that the optimal quantile estimator is nearly one order of magnitude more computationally efficient than previous estimators. For large-scale learning tasks in which storing and computing pairwise distances is a serious bottleneck, this estimator should be desirable. In addition to its computational advantages, the optimal quantile estimator exhibits nice theoretical properties. It is more accurate than previous estimators when $\alpha>1$. We derive its theoretical error bounds and establish the explicit (i.e., no hidden constants) sample complexity bound.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.