Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computationally Efficient Estimators for Dimension Reductions Using Stable Random Projections (0806.4422v1)

Published 27 Jun 2008 in cs.LG

Abstract: The method of stable random projections is a tool for efficiently computing the $l_\alpha$ distances using low memory, where $0<\alpha \leq 2$ is a tuning parameter. The method boils down to a statistical estimation task and various estimators have been proposed, based on the geometric mean, the harmonic mean, and the fractional power etc. This study proposes the optimal quantile estimator, whose main operation is selecting, which is considerably less expensive than taking fractional power, the main operation in previous estimators. Our experiments report that the optimal quantile estimator is nearly one order of magnitude more computationally efficient than previous estimators. For large-scale learning tasks in which storing and computing pairwise distances is a serious bottleneck, this estimator should be desirable. In addition to its computational advantages, the optimal quantile estimator exhibits nice theoretical properties. It is more accurate than previous estimators when $\alpha>1$. We derive its theoretical error bounds and establish the explicit (i.e., no hidden constants) sample complexity bound.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.