Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Agnostically Learning Juntas from Random Walks (0806.4210v1)

Published 25 Jun 2008 in cs.LG

Abstract: We prove that the class of functions g:{-1,+1}n -> {-1,+1} that only depend on an unknown subset of k<<n variables (so-called k-juntas) is agnostically learnable from a random walk in time polynomial in n, 2^{k^2}, epsilon^{-k}, and log(1/delta). In other words, there is an algorithm with the claimed running time that, given epsilon, delta > 0 and access to a random walk on {-1,+1}n labeled by an arbitrary function f:{-1,+1}n -> {-1,+1}, finds with probability at least 1-delta a k-junta that is (opt(f)+epsilon)-close to f, where opt(f) denotes the distance of a closest k-junta to f.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.