Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum and Randomized Lower Bounds for Local Search on Vertex-Transitive Graphs (0806.3437v1)

Published 20 Jun 2008 in quant-ph and cs.DS

Abstract: We study the problem of \emph{local search} on a graph. Given a real-valued black-box function f on the graph's vertices, this is the problem of determining a local minimum of f--a vertex v for which f(v) is no more than f evaluated at any of v's neighbors. In 1983, Aldous gave the first strong lower bounds for the problem, showing that any randomized algorithm requires $\Omega(2{n/2 - o(1)})$ queries to determine a local minima on the n-dimensional hypercube. The next major step forward was not until 2004 when Aaronson, introducing a new method for query complexity bounds, both strengthened this lower bound to $\Omega(2{n/2}/n2)$ and gave an analogous lower bound on the quantum query complexity. While these bounds are very strong, they are known only for narrow families of graphs (hypercubes and grids). We show how to generalize Aaronson's techniques in order to give randomized (and quantum) lower bounds on the query complexity of local search for the family of vertex-transitive graphs. In particular, we show that for any vertex-transitive graph G of N vertices and diameter d, the randomized and quantum query complexities for local search on G are $\Omega(N{1/2}/d\log N)$ and $\Omega(N{1/4}/\sqrt{d\log N})$, respectively.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.