Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Strategy Iteration using Non-Deterministic Strategies for Solving Parity Games (0806.2923v4)

Published 18 Jun 2008 in cs.GT and cs.LO

Abstract: This article extends the idea of solving parity games by strategy iteration to non-deterministic strategies: In a non-deterministic strategy a player restricts himself to some non-empty subset of possible actions at a given node, instead of limiting himself to exactly one action. We show that a strategy-improvement algorithm by by Bjoerklund, Sandberg, and Vorobyov can easily be adapted to the more general setting of non-deterministic strategies. Further, we show that applying the heuristic of "all profitable switches" leads to choosing a "locally optimal" successor strategy in the setting of non-deterministic strategies, thereby obtaining an easy proof of an algorithm by Schewe. In contrast to the algorithm by Bjoerklund et al., we present our algorithm directly for parity games which allows us to compare it to the algorithm by Jurdzinski and Voege: We show that the valuations used in both algorithm coincide on parity game arenas in which one player can "surrender". Thus, our algorithm can also be seen as a generalization of the one by Jurdzinski and Voege to non-deterministic strategies. Finally, using non-deterministic strategies allows us to show that the number of improvement steps is bound from above by O(1.724n). For strategy-improvement algorithms, this bound was previously only known to be attainable by using randomization.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube