Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Utilisation des grammaires probabilistes dans les tâches de segmentation et d'annotation prosodique (0806.1156v1)

Published 6 Jun 2008 in cs.LG

Abstract: Nous pr\'esentons dans cette contribution une approche `a la fois symbolique et probabiliste permettant d'extraire l'information sur la segmentation du signal de parole `a partir d'information prosodique. Nous utilisons pour ce faire des grammaires probabilistes poss\'edant une structure hi\'erarchique minimale. La phase de construction des grammaires ainsi que leur pouvoir de pr\'ediction sont \'evalu\'es qualitativement ainsi que quantitativement. ----- Methodologically oriented, the present work sketches an approach for prosodic information retrieval and speech segmentation, based on both symbolic and probabilistic information. We have recourse to probabilistic grammars, within which we implement a minimal hierarchical structure. Both the stages of probabilistic grammar building and its testing in prediction are explored and quantitatively and qualitatively evaluated.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.