Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Directional Cross Diamond Search Algorithm for Fast Block Motion Estimation (0806.0689v1)

Published 4 Jun 2008 in cs.CV

Abstract: In block-matching motion estimation (BMME), the search patterns have a significant impact on the algorithm's performance, both the search speed and the search quality. The search pattern should be designed to fit the motion vector probability (MVP) distribution characteristics of the real-world sequences. In this paper, we build a directional model of MVP distribution to describe the directional-center-biased characteristic of the MVP distribution and the directional characteristics of the conditional MVP distribution more exactly based on the detailed statistical data of motion vectors of eighteen popular sequences. Three directional search patterns are firstly designed by utilizing the directional characteristics and they are the smallest search patterns among the popular ones. A new algorithm is proposed using the horizontal cross search pattern as the initial step and the horizontal/vertical diamond search pattern as the subsequent step for the fast BMME, which is called the directional cross diamond search (DCDS) algorithm. The DCDS algorithm can obtain the motion vector with fewer search points than CDS, DS or HEXBS while maintaining the similar or even better search quality. The gain on speedup of DCDS over CDS or DS can be up to 54.9%. The simulation results show that DCDS is efficient, effective and robust, and it can always give the faster search speed on different sequences than other fast block-matching algorithm in common use.

Citations (4)

Summary

We haven't generated a summary for this paper yet.