Constraint Complexity of Realizations of Linear Codes on Arbitrary Graphs (0805.2199v1)
Abstract: A graphical realization of a linear code C consists of an assignment of the coordinates of C to the vertices of a graph, along with a specification of linear state spaces and linear local constraint'' codes to be associated with the edges and vertices, respectively, of the graph. The $\k$-complexity of a graphical realization is defined to be the largest dimension of any of its local constraint codes. $\k$-complexity is a reasonable measure of the computational complexity of a sum-product decoding algorithm specified by a graphical realization. The main focus of this paper is on the following problem: given a linear code C and a graph G, how small can the $\k$-complexity of a realization of C on G be? As useful tools for attacking this problem, we introduce the Vertex-Cut Bound, and the notion of
vc-treewidth'' for a graph, which is closely related to the well-known graph-theoretic notion of treewidth. Using these tools, we derive tight lower bounds on the $\k$-complexity of any realization of C on G. Our bounds enable us to conclude that good error-correcting codes can have low-complexity realizations only on graphs with large vc-treewidth. Along the way, we also prove the interesting result that the ratio of the $\k$-complexity of the best conventional trellis realization of a length-n code C to the $\k$-complexity of the best cycle-free realization of C grows at most logarithmically with codelength n. Such a logarithmic growth rate is, in fact, achievable.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.