Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficiently Testing Sparse GF(2) Polynomials (0805.1765v1)

Published 13 May 2008 in cs.CC

Abstract: We give the first algorithm that is both query-efficient and time-efficient for testing whether an unknown function $f: {0,1}n \to {0,1}$ is an $s$-sparse GF(2) polynomial versus $\eps$-far from every such polynomial. Our algorithm makes $\poly(s,1/\eps)$ black-box queries to $f$ and runs in time $n \cdot \poly(s,1/\eps)$. The only previous algorithm for this testing problem \cite{DLM+:07} used poly$(s,1/\eps)$ queries, but had running time exponential in $s$ and super-polynomial in $1/\eps$. Our approach significantly extends the testing by implicit learning'' methodology of \cite{DLM+:07}. The learning component of that earlier work was a brute-force exhaustive search over a concept class to find a hypothesis consistent with a sample of random examples. In this work, the learning component is a sophisticated exact learning algorithm for sparse GF(2) polynomials due to Schapire and Sellie \cite{SchapireSellie:96}. A crucial element of this work, which enables us to simulate the membership queries required by \cite{SchapireSellie:96}, is an analysis establishing new properties of how sparse GF(2) polynomials simplify under certain restrictions oflow-influence'' sets of variables.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.