Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nonnegative Matrix Factorization via Rank-One Downdate (0805.0120v1)

Published 1 May 2008 in cs.IR and cs.NA

Abstract: Nonnegative matrix factorization (NMF) was popularized as a tool for data mining by Lee and Seung in 1999. NMF attempts to approximate a matrix with nonnegative entries by a product of two low-rank matrices, also with nonnegative entries. We propose an algorithm called rank-one downdate (R1D) for computing a NMF that is partly motivated by singular value decomposition. This algorithm computes the dominant singular values and vectors of adaptively determined submatrices of a matrix. On each iteration, R1D extracts a rank-one submatrix from the dataset according to an objective function. We establish a theoretical result that maximizing this objective function corresponds to correctly classifying articles in a nearly separable corpus. We also provide computational experiments showing the success of this method in identifying features in realistic datasets.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.