Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The communication complexity of non-signaling distributions (0804.4859v5)

Published 30 Apr 2008 in quant-ph and cs.CC

Abstract: We study a model of communication complexity that encompasses many well-studied problems, including classical and quantum communication complexity, the complexity of simulating distributions arising from bipartite measurements of shared quantum states, and XOR games. In this model, Alice gets an input x, Bob gets an input y, and their goal is to each produce an output a,b distributed according to some pre-specified joint distribution p(a,b|x,y). We introduce a new technique based on affine combinations of lower-complexity distributions. Specifically, we introduce two complexity measures, one which gives lower bounds on classical communication, and one for quantum communication. These measures can be expressed as convex optimization problems. We show that the dual formulations have a striking interpretation, since they coincide with maximum violations of Bell and Tsirelson inequalities. The dual expressions are closely related to the winning probability of XOR games. These lower bounds subsume many known communication complexity lower bound methods, most notably the recent lower bounds of Linial and Shraibman for the special case of Boolean functions. We show that the gap between the quantum and classical lower bounds is at most linear in the size of the support of the distribution, and does not depend on the size of the inputs. This translates into a bound on the gap between maximal Bell and Tsirelson inequality violations, which was previously known only for the case of distributions with Boolean outcomes and uniform marginals. Finally, we give an exponential upper bound on quantum and classical communication complexity in the simultaneous messages model, for any non-signaling distribution. One consequence is a simple proof that any quantum distribution can be approximated with a constant number of bits of communication.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube