Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Low-Complexity LDPC Codes with Near-Optimum Performance over the BEC (0804.2991v1)

Published 18 Apr 2008 in cs.IT and math.IT

Abstract: Recent works showed how low-density parity-check (LDPC) erasure correcting codes, under maximum likelihood (ML) decoding, are capable of tightly approaching the performance of an ideal maximum-distance-separable code on the binary erasure channel. Such result is achievable down to low error rates, even for small and moderate block sizes, while keeping the decoding complexity low, thanks to a class of decoding algorithms which exploits the sparseness of the parity-check matrix to reduce the complexity of Gaussian elimination (GE). In this paper the main concepts underlying ML decoding of LDPC codes are recalled. A performance analysis among various LDPC code classes is then carried out, including a comparison with fixed-rate Raptor codes. The results show that LDPC and Raptor codes provide almost identical performance in terms of decoding failure probability vs. overhead.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.