Nonextensive Generalizations of the Jensen-Shannon Divergence (0804.1653v1)
Abstract: Convexity is a key concept in information theory, namely via the many implications of Jensen's inequality, such as the non-negativity of the Kullback-Leibler divergence (KLD). Jensen's inequality also underlies the concept of Jensen-Shannon divergence (JSD), which is a symmetrized and smoothed version of the KLD. This paper introduces new JSD-type divergences, by extending its two building blocks: convexity and Shannon's entropy. In particular, a new concept of q-convexity is introduced and shown to satisfy a Jensen's q-inequality. Based on this Jensen's q-inequality, the Jensen-Tsallis q-difference is built, which is a nonextensive generalization of the JSD, based on Tsallis entropies. Finally, the Jensen-Tsallis q-difference is charaterized in terms of convexity and extrema.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.