Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Nonextensive Generalizations of the Jensen-Shannon Divergence (0804.1653v1)

Published 10 Apr 2008 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Convexity is a key concept in information theory, namely via the many implications of Jensen's inequality, such as the non-negativity of the Kullback-Leibler divergence (KLD). Jensen's inequality also underlies the concept of Jensen-Shannon divergence (JSD), which is a symmetrized and smoothed version of the KLD. This paper introduces new JSD-type divergences, by extending its two building blocks: convexity and Shannon's entropy. In particular, a new concept of q-convexity is introduced and shown to satisfy a Jensen's q-inequality. Based on this Jensen's q-inequality, the Jensen-Tsallis q-difference is built, which is a nonextensive generalization of the JSD, based on Tsallis entropies. Finally, the Jensen-Tsallis q-difference is charaterized in terms of convexity and extrema.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.