Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Succinct Data Structures for Retrieval and Approximate Membership (0803.3693v1)

Published 26 Mar 2008 in cs.DS, cs.DB, and cs.IR

Abstract: The retrieval problem is the problem of associating data with keys in a set. Formally, the data structure must store a function f: U ->{0,1}r that has specified values on the elements of a given set S, a subset of U, |S|=n, but may have any value on elements outside S. Minimal perfect hashing makes it possible to avoid storing the set S, but this induces a space overhead of Theta(n) bits in addition to the nr bits needed for function values. In this paper we show how to eliminate this overhead. Moreover, we show that for any k query time O(k) can be achieved using space that is within a factor 1+e{-k} of optimal, asymptotically for large n. If we allow logarithmic evaluation time, the additive overhead can be reduced to O(log log n) bits whp. The time to construct the data structure is O(n), expected. A main technical ingredient is to utilize existing tight bounds on the probability of almost square random matrices with rows of low weight to have full row rank. In addition to direct constructions, we point out a close connection between retrieval structures and hash tables where keys are stored in an array and some kind of probing scheme is used. Further, we propose a general reduction that transfers the results on retrieval into analogous results on approximate membership, a problem traditionally addressed using Bloom filters. Again, we show how to eliminate the space overhead present in previously known methods, and get arbitrarily close to the lower bound. The evaluation procedures of our data structures are extremely simple (similar to a Bloom filter). For the results stated above we assume free access to fully random hash functions. However, we show how to justify this assumption using extra space o(n) to simulate full randomness on a RAM.

Citations (88)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.