Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Digital Ecosystems: Self-Organisation of Evolving Agent Populations (0803.2675v4)

Published 18 Mar 2008 in cs.NE and cs.CC

Abstract: A primary motivation for our research in Digital Ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic problems. Self-organisation is perhaps one of the most desirable features in the systems that we engineer, and it is important for us to be able to measure self-organising behaviour. We investigate the self-organising aspects of Digital Ecosystems, created through the application of evolutionary computing to Multi-Agent Systems (MASs), aiming to determine a macroscopic variable to characterise the self-organisation of the evolving agent populations within. We study a measure for the self-organisation called Physical Complexity; based on statistical physics, automata theory, and information theory, providing a measure of information relative to the randomness in an organism's genome, by calculating the entropy in a population. We investigate an extension to include populations of variable length, and then built upon this to construct an efficiency measure to investigate clustering within evolving agent populations. Overall an insight has been achieved into where and how self-organisation occurs in our Digital Ecosystem, and how it can be quantified.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.