Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Maximal Orders in the Design of Dense Space-Time Lattice Codes (0803.2639v1)

Published 18 Mar 2008 in cs.IT, cs.DM, math.IT, and math.RA

Abstract: We construct explicit rate-one, full-diversity, geometrically dense matrix lattices with large, non-vanishing determinants (NVD) for four transmit antenna multiple-input single-output (MISO) space-time (ST) applications. The constructions are based on the theory of rings of algebraic integers and related subrings of the Hamiltonian quaternions and can be extended to a larger number of Tx antennas. The usage of ideals guarantees a non-vanishing determinant larger than one and an easy way to present the exact proofs for the minimum determinants. The idea of finding denser sublattices within a given division algebra is then generalized to a multiple-input multiple-output (MIMO) case with an arbitrary number of Tx antennas by using the theory of cyclic division algebras (CDA) and maximal orders. It is also shown that the explicit constructions in this paper all have a simple decoding method based on sphere decoding. Related to the decoding complexity, the notion of sensitivity is introduced, and experimental evidence indicating a connection between sensitivity, decoding complexity and performance is provided. Simulations in a quasi-static Rayleigh fading channel show that our dense quaternionic constructions outperform both the earlier rectangular lattices and the rotated ABBA lattice as well as the DAST lattice. We also show that our quaternionic lattice is better than the DAST lattice in terms of the diversity-multiplexing gain tradeoff.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube