Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Toeplitz Block Matrices in Compressed Sensing (0803.0755v1)

Published 5 Mar 2008 in cs.IT, math.IT, and math.PR

Abstract: Recent work in compressed sensing theory shows that $n\times N$ independent and identically distributed (IID) sensing matrices whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal with high probability even if $n\ll N$. Motivated by signal processing applications, random filtering with Toeplitz sensing matrices whose elements are drawn from the same distributions were considered and shown to also be sufficient to recover a sparse signal from reduced samples exactly with high probability. This paper considers Toeplitz block matrices as sensing matrices. They naturally arise in multichannel and multidimensional filtering applications and include Toeplitz matrices as special cases. It is shown that the probability of exact reconstruction is also high. Their performance is validated using simulations.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube