Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Geometric Set Cover and Hitting Sets for Polytopes in $R^3$ (0802.2861v1)

Published 20 Feb 2008 in cs.CG

Abstract: Suppose we are given a finite set of points $P$ in $\R3$ and a collection of polytopes $\mathcal{T}$ that are all translates of the same polytope $T$. We consider two problems in this paper. The first is the set cover problem where we want to select a minimal number of polytopes from the collection $\mathcal{T}$ such that their union covers all input points $P$. The second problem that we consider is finding a hitting set for the set of polytopes $\mathcal{T}$, that is, we want to select a minimal number of points from the input points $P$ such that every given polytope is hit by at least one point. We give the first constant-factor approximation algorithms for both problems. We achieve this by providing an epsilon-net for translates of a polytope in $R3$ of size $\bigO(\frac{1{\epsilon)$.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.