Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Efficient Minimization of DFAs with Partial Transition Functions (0802.2826v1)

Published 20 Feb 2008 in cs.IT, cs.DS, and math.IT

Abstract: Let PT-DFA mean a deterministic finite automaton whose transition relation is a partial function. We present an algorithm for minimizing a PT-DFA in $O(m \lg n)$ time and $O(m+n+\alpha)$ memory, where $n$ is the number of states, $m$ is the number of defined transitions, and $\alpha$ is the size of the alphabet. Time consumption does not depend on $\alpha$, because the $\alpha$ term arises from an array that is accessed at random and never initialized. It is not needed, if transitions are in a suitable order in the input. The algorithm uses two instances of an array-based data structure for maintaining a refinable partition. Its operations are all amortized constant time. One instance represents the classical blocks and the other a partition of transitions. Our measurements demonstrate the speed advantage of our algorithm on PT-DFAs over an $O(\alpha n \lg n)$ time, $O(\alpha n)$ memory algorithm.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.