Efficient Minimization of DFAs with Partial Transition Functions (0802.2826v1)
Abstract: Let PT-DFA mean a deterministic finite automaton whose transition relation is a partial function. We present an algorithm for minimizing a PT-DFA in $O(m \lg n)$ time and $O(m+n+\alpha)$ memory, where $n$ is the number of states, $m$ is the number of defined transitions, and $\alpha$ is the size of the alphabet. Time consumption does not depend on $\alpha$, because the $\alpha$ term arises from an array that is accessed at random and never initialized. It is not needed, if transitions are in a suitable order in the input. The algorithm uses two instances of an array-based data structure for maintaining a refinable partition. Its operations are all amortized constant time. One instance represents the classical blocks and the other a partition of transitions. Our measurements demonstrate the speed advantage of our algorithm on PT-DFAs over an $O(\alpha n \lg n)$ time, $O(\alpha n)$ memory algorithm.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.