Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the Complexity of Nash Equilibria of Action-Graph Games (0802.1604v1)

Published 12 Feb 2008 in cs.GT and cs.MA

Abstract: We consider the problem of computing Nash Equilibria of action-graph games (AGGs). AGGs, introduced by Bhat and Leyton-Brown, is a succinct representation of games that encapsulates both "local" dependencies as in graphical games, and partial indifference to other agents' identities as in anonymous games, which occur in many natural settings. This is achieved by specifying a graph on the set of actions, so that the payoff of an agent for selecting a strategy depends only on the number of agents playing each of the neighboring strategies in the action graph. We present a Polynomial Time Approximation Scheme for computing mixed Nash equilibria of AGGs with constant treewidth and a constant number of agent types (and an arbitrary number of strategies), together with hardness results for the cases when either the treewidth or the number of agent types is unconstrained. In particular, we show that even if the action graph is a tree, but the number of agent-types is unconstrained, it is NP-complete to decide the existence of a pure-strategy Nash equilibrium and PPAD-complete to compute a mixed Nash equilibrium (even an approximate one); similarly for symmetric AGGs (all agents belong to a single type), if we allow arbitrary treewidth. These hardness results suggest that, in some sense, our PTAS is as strong of a positive result as one can expect.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.