Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On quantum statistics in data analysis (0802.1296v3)

Published 10 Feb 2008 in cs.IR, math.CT, and quant-ph

Abstract: Originally, quantum probability theory was developed to analyze statistical phenomena in quantum systems, where classical probability theory does not apply, because the lattice of measurable sets is not necessarily distributive. On the other hand, it is well known that the lattices of concepts, that arise in data analysis, are in general also non-distributive, albeit for completely different reasons. In his recent book, van Rijsbergen argues that many of the logical tools developed for quantum systems are also suitable for applications in information retrieval. I explore the mathematical support for this idea on an abstract vector space model, covering several forms of data analysis (information retrieval, data mining, collaborative filtering, formal concept analysis...), and roughly based on an idea from categorical quantum mechanics. It turns out that quantum (i.e., noncommutative) probability distributions arise already in this rudimentary mathematical framework. We show that a Bell-type inequality must be satisfied by the standard similarity measures, if they are used for preference predictions. The fact that already a very general, abstract version of the vector space model yields simple counterexamples for such inequalities seems to be an indicator of a genuine need for quantum statistics in data analysis.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.