Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Minimum Leaf Out-branching and Related Problems (0801.1979v3)

Published 13 Jan 2008 in cs.DS and cs.DM

Abstract: Given a digraph $D$, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in $D$ an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. We prove that MinLOB is polynomial-time solvable for acyclic digraphs. In general, MinLOB is NP-hard and we consider three parameterizations of MinLOB. We prove that two of them are NP-complete for every value of the parameter, but the third one is fixed-parameter tractable (FPT). The FPT parametrization is as follows: given a digraph $D$ of order $n$ and a positive integral parameter $k$, check whether $D$ contains an out-branching with at most $n-k$ leaves (and find such an out-branching if it exists). We find a problem kernel of order $O(k2)$ and construct an algorithm of running time $O(2{O(k\log k)}+n6),$ which is an `additive' FPT algorithm. We also consider transformations from two related problems, the minimum path covering and the maximum internal out-tree problems into MinLOB, which imply that some parameterizations of the two problems are FPT as well.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube